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01 In Chapter 2, I described that one of the initial chal-
lenges of our cross-disciplinary collaboration was a lack 
of shared language and how we solved this problem.

02 icerm.brown.edu/programs/sp-f19/ 
This unique opportunity was organized by several 
mathematicians and made possible by ICERM’s mission 
to support and “expand the use of computational and 
experimental methods in mathematics.”

03 Each type of making process having its own set of 
specialized vocabulary.

Putting in the Elbow Grease CLAIMING COMMON GROUND WITH DIFFERENT SETS 
OF VOCABULARY  01 In the fall of 2019, I attended the Illus-
trating Mathematics special semester at the Institute for
Computational and Experimental Research in Mathematics 
(ICERM) at Brown University. The special semester was an 
opportunity for mathematicians interested in creating visual
representations to share ideas among themselves and in a 
larger community of digital and visual artists. 02  At ICERM, 
I noticed a very interesting dilemma: mathematicians were 
wondering what an artist would get out of a math-art collab-
oration and, not surprisingly, artists were asking the reverse 
question. What does each discipline have to offer to the 
other and, most importantly, how do we attempt to converse 
with one another?

During my many interactions with mathematicians, I 
have noticed a language barrier. The language of math— 
being one that handles invisible abstract objects, spaces 
and processes— has to be extremely precise in its vocab-
ulary definitions. These definitions can be quite opaque to 
an outsider. In fact, each math area is so specialized that, in 
order to introduce a research topic to their peers, a mathe-
matician must start by defining the terms that will be used, 
even those ones that are universally accepted.

Perhaps the greatest difficulty Sara and I have encoun-
tered during our collaboration (besides coordinating the 
busy schedules of two academics) was a need to define 
and redefine everything, not only words but our art and 
math toolkits as well. For an artist, this highly technical 
vocabulary of math is confusing at best; it may seem impen-
etrable and full of traps. There is nothing more intimidating 
than trying to ask a question but not having the right words.
It takes considerable effort and humility on both sides to 

strike up a meaningful dialogue. But just like when learning 
a new language, intentionality and practice matters, and a 
lot of ground can be covered by communicating through 
drawings, models, metaphors and even gestures.

Similarly, art also has its own language built on art histo-
ry, aesthetics, philosophy and the making tradition 03 itself, 
which is not readily accessible outside of the specific area of 
practice. Without a doubt, we each had a great deal to learn. 
The participation of our students—both undergraduates 
and grads—was enormously helpful in this, as all ideas and 
terms were eventually vetted by the entire group, from PhD 
students in math to undergraduates from various majors.

All vocabulary used in the book is a result of deliberate 
compromises that ultimately allowed us to move forward 
together. While precise technicalities still matter a great deal 
within each of our professional areas, we had to find ways 
through which we could converse less restrictively with 
each other and with those who were not already in math or 
digital ceramics. For this reason, and to keep the content 
accessible, I continue to refer to the underlying mathematical 
models as GAMES.

Wedging, in ceramics, is the process of kneading the clay into pliable matter, 
making it more uniform in consistency and thus more forgiving and easier to 
work with throughout the rest of the process. Wedging, which is quite hum-
drum and physical and seemingly having not much to do with the form-giving 
process, actually does something quite important: it makes the material 
come alive.
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GAMES SHARE THE FOLLOWING BASIC COMPONENTS:

CELLS AND LATTICES  
Imagine an environment 04  that is divided into small units, 
just like a Go game board. These units are called CELLS. 
They are structurally organized to form a LATTICE (also 
called a GRID). When built from all the same cells, the lattice 
is REGULAR.

STATES
Each cell can exist in a finite number of states, such as 
dead/alive; ON/OFF; or collect a specific value, which may 
be represented by a number or a color. These resulting 
states are always DISCRETE: only 0’s and 1’s in BINARY 
systems and written up as an INTEGER (a whole number)
in non-binary systems.

04 Can be a 2D surface or a space of 3D or any higher 
dimensions.

05 Take this statement, for example: If the clay is too dry, 
then pieces won’t stick together.

06 One unit or one row at a time. This is an important char-
acteristic of the ELEMENTARY CELLULAR AUTOMATON.

07 Such as in an ABELIAN SANDPILE MODEL. 
Mathematicians call this characteristic COMMUTATIVE, 
meaning that the order in which the pile inside of each 
cell topples does not matter. Start anywhere and you still 
would get to the same outcome.

08 There are a wide range of possibilities: ripples, 
cascades, symmetries, transformations, etc. Abundant 
examples can be spotted on the beach sand in low tide, 
in animal skin patterns, and in plants such as ferns, pine-
apples and cacti, etc.

RULES
Rules are a set of instructions for IF-THEN 05  actions to 
be performed in the game. Any given sequence of these 
instructions is called an ALGORITHM. The sequence of 
instructions does not have to be logical; we could pick a 
random key to say what should happen next. There are 
certain flexibilities and restrictions when setting the rules 
of the game. Firstly, we need a rule that decides which 
cell locations are going to be checked and acted upon by 
the algorithms. Typically, rules scan the cell and selected 
near-neighbors. The change can happen in a LINEAR  06   
fashion or it may play out everywhere on the game board
simultaneously. 07  Secondly, rules are ITERATIVE. The 
whole point of the game is to run the rules repeatedly, until
we run out of space or, in case of the sandpiles, until the 
system stabilizes and cannot be changed anymore.

PATTERNS AND MATRICES
Patterns are the outcome of the game. Patterns are the ac-
tual arrangement of cell (unit) states resulting from applying 
rule-algorithms. Each time the rule has run, a transforma-
tion happens and a new arrangement of states develops on 
our game board.  There are plenty of patterns observable in 
nature and among things created by humans. Commonly, 
patterns are understood to have regularity, recurrence or 
self-similarity. 08  However, the term PATTERN refers to a 
human cognitive ability that recognizes certain regularities 
and relationships both locally (within a small area of neigh-
boring cells) and globally (across the game board). Cognition 
organizes an array of cells in various states into meaningful 
motifs. Removing this subjectivity of human cognition, a 
given arrangement of units is called a MATRIX.
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12 The Game of Life was popularized in the 1970’s. See 
more in Gardner, Martin. “Mathematical Games: The
fantastic combinations of John Conway’s new solitaire 
game “life.”” Scientific American. October, 1970. Vol. 223.
Pg. 120-123. 

13 More mathematical details about this in Chapter 4: 
FORM GIVING – More on the Mathematical Concepts.

14 These too will be explained in greater depth and detail 
in Chapter 4.

15 Especially the sandpile models were breaking our 
equipment. Some of the plots ran overnight; many have 
never finished. I’ve since had a chance to discuss this with 
problem with Lionel Levin of Cornell University. Levin has 
done a lot of work with sandpiles and created both meth-
ods and code, which allow greater efficiency, such as a 
realtime visualization of the changes in the sandpile matrix.

pi.math.cornell.edu/~levine/

09 Kind of difficult to imagine what that looks like! No 
wonder, our brains don’t have a visual concept for higher
dimensional spaces. Instead, follow the logic from 1D to 
2D, and on, to 3D, 4D, …, etc.

10 INITIAL STATE

11 GENERATIONS are determined by how many times 
the rules have been run.

Rules and More Rules GAMES WITH RULES  When I first contacted Sara with 
my question about mathematical constructions based on 
simple repeating rules which may have the potential to 
build unpredictable complexities, she suggested that I look 
into a type of model called CELLULAR AUTOMATON (CA). 
Next time we got together in her office I was prepared with 
a thousand questions and had some plans.

Cellular automata are discrete game-like processes. 
They consist of cells that can only have discrete values, in 
other words, a finite number of states. Typically, CA are bi-
nary, but it is entirely possible to set up rules in ways which 
result in non-binary outcomes. The cells themselves may be 
organized in any number of dimensions: in 1D, they form a 
line (like beads on a string); in 2D, they live on a plane (like a 
tiled floor); in 3D, they occupy space (like a stack of box-
es) and, in theory, they could expand beyond, into higher 
dimensions. 09 CA games do not require additional input 
after setting up a starting state 10 and repeating the rules. 
The matrix evolves on its own, the process of which can be 
recorded as snapshots in time, counting GENERATIONS. 11  
One familiar example of a CA is Conway’s Game of Life, 12 
which is played on the plane and models the life-cycle of 
cells being born and dying over time according to how pop-
ulated their neighborhoods have become. In the decades 
since Conway’s discovery, there have been an abundance 
of applications of related numerical games in computer 
science, economics, political science and biology. 

At Sara’s suggestion, I started focusing on the elementa-
ry cellular automata, which—being set up as a single line—
is possibly the simplest form of a CA. 13  This simplicity gave 
me an opportunity to develop and test methods for turning 
a binary numerical matrix into tactile matter, to show a 

timeline of changing cell states as a printed ceramic texture 
spread across a surface. Studying the elementary cellular 
automata in such detail also helped me to formulate further 
questions about complex systems based on simple rules. 

Sara was kind enough to provide the basic code for the 
elementary CA, which I played with in the studio, changing 
and altering it according to my actual research questions 
and artistic ideas. The work with the CA was followed by 
a collaborative exploration of SANDPILE MODELS, which 
are played on a two-dimensional lattice but with an entirely 
different types of rules. Here we allow more possible states, 
which can be imagined as the number of sand grains (0, 
1, 2, and on…) that are able to accumulate within each cell 
without the pile toppling over under its own weight. 14

We tried playing these games by coloring in cells with 
markers and tossing pennies on makeshift game boards. 
However, repeating rules rigorously and precisely calculat-
ing nearly endless iterations would not have been possible 
without a digital infrastructure: coding and lots of computing 
power. Advancements in computing now permit running the 
full course when plotting out mega-matrices of CA games, 
at least in theory. In our actual practice, the more genera-
tions or more complexity we added, the more we felt the 
limitation of our computing strength. 15 Nevertheless, we 
were able to work with as many as a million cells for hun-
dreds of thousands of iterations, resulting in unprecedented 
complexities. 

We needed to tweak our own algorithms and approaches 
a number of times as a response to problems arising at 
every step of the computational process. Thus, the visual 
rhythm created with cellular automata or other game-like 
algorithmic systems is not merely an aesthetic experience. 
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It is true that the resulting patterns are beautiful to look at, 
but, for me at least, they also became an archive of the pitfalls 
of algorithmic processes and of our predictive abilities when 
it comes to modeling complex systems and interactions.

The traditional depiction of cellular automata is a visual 
matrix. My plan was to give this model of system behavior 
a life as texture, as form, as a tactile material entity that has 
its own rules of formulation and its own existence. I was 
going to get this by 3D printing clay, which I hoped would 
be able to convey both the abstract algorithmic origins of 
the model and also the physical world it was called on to 
describe.

Ceramic printing has advanced in a few short years from 
the studio of a few early-adopter potters and makers to 
being the new best friend of the many design and archi-
tecture firms, which keep popping up all over my area for 
the making of one or another specific consumer product, 
typically, designer versions of common household items. 
Reflecting on this expansion of the field, I am now certain 
that my investigation of the connection between math and 
printing with clay was a valuable exploration, not for the 
tangible, but for the intangible results. Being computational 
in origin and digital in making, the objects that came out of 
this research may be reproduced with relative ease by  
others later, but working through these questions for the 
first time also allowed me to circumambulate larger ideas 
of making in the algorithmic age.

My initial attempts at mathematically inspired 3D clay 
printing treaded on unexplored ground and thus met with 
many new challenges: some in design; others in structural, 
coding or mathematical issues; and many were simply the 
usual birthing pains of the creative art process. Instead of 

running each type of pattern through the same workflow, 
which surely would have resulted in outcomes of close 
resemblance, I was striving—though not always succeed-
ing at the first attempt—to create a new approach each and 
every time. The resolution of this, along with the excitement 
of the baby steps of actual math discoveries, which were 
shared amongst Sara, our WXML team and myself, has 
created a wonderfully rewarding experience and a constant 
flood of new ideas on which our explorations continued for 
many months.

MATH RULES THE DIGITAL WORLD  Our workflow from 
the math to the object can be summarized by the follow-
ing steps: After picking our game rules, we wrote them up 
in a mathematical program, CoCalc. 16  Upon running the 
program, we received a plot of a DISTRIBUTION MATRIX, 
black and white for an elementary CA or a multi-color map 
for sandpile models. 
This matrix was then taken to a 3D modeling program, 
Rhinoceros, 17 and turned into geometries of cubes and 
cylinders. This process required careful calculations, which 
were reverse engineered from the relationship between 
printing layer height, nozzle size and cell size and desired 
scale of the finished object.

I was originally inspired by the relationship between 
mathematical thinking and our current digital-technological 
paradigm. In the process of working on these projects, I  
found that I had to learn about math even more through the 
actual process of making. This was not painful at all. In fact, 
it was easy to embrace and quite useful and exciting!

Undoubtedly, mathematics is both the supreme govern-
ing rule and the most critical engine of the digital world. This 
simple fact is easily forgotten in everyday life, as most of our 
daily experiences with technology are designed to give a 
low-barrier access to us, users, as well as to hide what’s go-
ing on in the background. In most 3D printing projects, the 
user may not be aware that both mathematical thinking and 
actual math is part of their work from CAD to the code that 
communicates with the printer. 18 When a command does 
not work—for example, when two volumes cannot meld, 
a.k.a. BOOLEAN together—it is mathematics’ way of saying: 
This was a stupid question; try again, try better.  

16 CoCalc (formerly, SageMath, is a web-based platform 
for computational math, founded by mathematician,
William Stein.

17 Rhinoceros (Rhino) is a popular modeling program 
used by architects and designers everywhere. More 
about it in Chapter 4: FORM GIVING – More on 3D 
Printing.

18 Users of Rhino or any other 3D modeling program are 
familiar with these math terms: tangent, spline, Boolean, 
primitives, etc. Behind the rendering of geometry, 
algorithms run algebraic calculations with NURBS, math-
ematical representations of curves and surfaces. (More 
about these in Chapter 4.) Even the computer graphics 
preview (GPU) runs on math.
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21 Mathematical visualization is an area that makes 
abstract concepts imaginable through illustrations, dia-
grams or pictures. For many mathematical visualizations, 
images are often more useful than physical objects, as 
our minds are more attuned to make the leap from a 2D 
representation of a 3D space than from a 3D object to 
higher dimensional spaces.

22 A similar argument is made in McCullough, Malcolm. 
Abstracting Craft: The Practiced Digital Hand. 1st MIT 
Press Paperback ed. Cambridge, Mass.: MIT Press, 1998.

23 Washburn, Dorothy Koster., and Crowe, Donald W. 
Symmetries of Culture: Theory and Practice of Plane Pat-
tern Analysis. Seattle: University of Washington Press, 1988.

19 pressure, speed, nozzle diameter, etc.

20 Clay’s make-up and consistency largely determines 
its behavior. Water content, types of clays present in the 
mix, as well as additives, impurities and atmospheric 
conditions, such as room temperature and humidity, also
contribute to those physical changes that have an effect 
on the finished print.

About Play TRIAL AND ERROR  Digital ceramics is grounded both in 
the world of math and in the world of matter described by
physics. Each, but especially the latter in ceramic 3D print-
ing, provides lots of opportunities for dealing with the un-
expected and, consequently, for improvisation and for play. 
Forms constructed with algorithmic/parametric processes 
offer limitless variations. Every time a file is printed, it may 
come out slightly differently, especially if slicing or machine 
settings 19 are being changed. Clay, a very much-alive 
organic material, may have different properties 20 each 
time, resulting in outcomes that may be anticipated with 
practice but never guaranteed. Clay has a very strong phys-
ical nature that responds to gravity, time and many other 
factors that are often too numerous and unpredictable to 
account for. Touch it once and you will leave a unique and 
unrepeatable mark.

During our year of math and art collaboration, we have 
discussed, debated and tested various possibilities for 
simple game-like systems and often jumped around from 
one exciting variation to a more promising one within a 
particular type of game. Worthy as it is by itself, the process 
of making these patterns in clay was never meant to be a 
visualization exercise. 21 Instead of being concerned with 
visualizing the math involved, my aim was to find a new 
understanding of the freedom and determination inherent 
in algorithmic processes through clay.

Constantly, I was running into various obstacles due to 
limitations of one kind of another: computing power, soft-
ware, machine, material or even my skillsets. In all maker 
practices, we speak of good craft, which usually refers 
to an experience-driven iterative procedure that keeps 
fine-tuning the process until the desired result is achieved. 

Repetitions build muscle memory and so does the accu-
mulation of a variety of different types of experiences, both 
the desirable and the surprising outcomes. With the help of 
these, I can make more accurate predictions or initiate new 
paths of discovery. In this sense of learning by doing, digital 
making fits into the tradition of craft practice. 22

Each step on the way, from coding to building a work-
flow of commands with the software, required numerous 
detours. I reworked the same object several times and still 
would come to find things of surprise. Even when I dialed in 
every parameter that I could control, each result was an ob-
ject, consistent with the rest yet unique and unrepeatable.

This is a good place in my narrative for a brief detour 
from digital ceramics to textile arts made by individual 
makers throughout the past centuries in various cultures 
around the world: Algorithmic processes, symmetries, and 
transformations of patterns have always had a great impor-
tance in the creation of visual art and a special significance 
for our visual perception.

Many books have been written that analyze these 
patterns through the lens of mathematics, focusing on 
symmetries and transformations. 23 Art historians, artists, 
designers, and crafts persons have also drawn on these 
classifications or created alternative systems of under-
standing of existing pattern libraries based on making pro-
cess/technology, regional historic and social context and 
the maker’s individual narrative. From ceramics through 
textiles, every culture and every time period has produced 
a rich archive of pattern variations, many of which, we 
assume, have developed by individuals innovating a single 
small step at a time, both preserving a cultural tradition and, 



50 51

at the same time, renewing it. Women were often in the 
forefront of this work, producing objects for gifts, commem-
orations, household utilitarian functions and, if they were 
affluent enough, sometimes just to kill time. In the case of 
basketry, knitting and weaving, a maker may be varying the 
UNDER/OVER sequence to create pattern variations, while 
in embroidery and quilting, play is based on alternating 
color sequences.

While having greatly benefited from the mathematical 
analyses of visual patterns, which look at designs in art to 
arrive at a classification of rules that create them, I decided 
to proceed in reverse. In my work with digital ceramics, I 
began with the math, asking what types of patterns might 
be created by formulating, navigating—and sometimes 
breaking—complex mathematical rules.

ROLE OF FAILURE  Failing when building a large object 
from 1mm thick layers is inevitable. The wet form slumps
and gets out of balance just enough for the next layer to 
miss alignment; cream cheese-soft clay collapses under its 
own weight; or a popping air bubble creates a void where 
clay was supposed to flow; etc. There are thousands of 
ways with ceramic 3D printing to not get what was just
minutes ago within reach in the CAD program’s digital pre-
view. At other times, changes might happen in the kiln. The 
heat at vitrification temperatures pushes tiny inconsisten-
cies even further and creates unrepeatable surprises. 24
Potters refer to the “memory” of clay, the material’s structur-
al intelligence (or shall we say stubbornness?) by which it 
remembers prior forms it has taken. Each clay body has a
“personality,” describing tactile and workable properties, 
which can only be understood by developing a close rela-
tionship with the material through interaction.

It is exactly these—clay’s memory, personality and 
directness—that make ceramic printing so exciting. And ex-
actly this unstable ground is where the opportunity to make 
mistakes, to fail splendidly and intelligently, arises. 
Failure is a frame of mind. I trust failure to be the precursor 
to fresher, better ideas and more elegant solutions.

If clay has a language, code also has its own language 
complete with syntax and logic. I was curious if what I knew 
about working with clay was also true for working with 
code. Causing the code to fail with intention, I decided, was 
the best way to find out. I embarked on an exploration into 
wreaking havoc on the self-organizing nature of the game 
by inputting binary patterns derived from various other 
textbased systems and by devising, what we called, mathe-
matical “viruses.” 25 

Viruses are simple but extraneous mathematical rules, 
which when introduced to the rulebased self-replicating 
system of the CA, would create unpredictable variations, 
many of them becoming manifest only after numerous 
iterations.

I also transcribed text into a linear string of ON and 
OFF cells by using various methods 26 and used it as the 
first line of the elementary CA. Interestingly, both this and 
the automata infected with a viral-rule would strive toward 
some kind of equilibrium, hinting at the difficulty in creating 
true randomness by algorithmic means. 
The viral patterns 27 were ultimately of less visual interest 
than patterns created by strictly adhering to the logical 
rules. At other times, we would find inexplicable blips, 
which were consistent enough for us to interpret as part of 
the pattern but which, without exception, turned out to be 
coding errors.

27 When the virus rule first expressed itself, it was 
definitely noticeable as a SINGULARITY (a mathematical 
term for something unusual compared to its surround-
ings). The more generations it went through, the less 
distinct its effects on the pattern became.

24 These ranged from deformations to color changes, to 
sagging or slumped walls; and, in extreme situations, to
cracks.

25 Did this with the help of Daria Micovic, who was a 
senior in the math department and a Slip Rabbit intern at 
that time. She has worked with me on several coding
projects, including this one, which played with the original 
elementary CA source code written by Sara Billey.

26 One of these methods was to convert text into dots 
and dashes of Morse code, which I liked a lot for its refer-
ence to the history of telecommunication. We also creat-
ed our own logic for various other types of transcription 
systems, as well briefly experimenting with using Braille.
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28 One of the most important issues I repeatedly 
encounter while printing is scale-related: Increasing or 
decreasing the size of the finished object changes the 
scale of the extruded texture. In order for the patterns 
to translate crisply to the desired scale of the finished 
object, a considerable amount of reverse-engineering is 
necessary, which involves testing various nozzle diame-
ters, layer heights and other print parameters.

29 The print file itself consists of a list of commands 
combined with rigorously mapped spatial (XYZ) coor-
dinates as if a strict road itinerary has been given. This 
does not only list the landmarks that need to be touched 
but also the distances between them, along with allowed 
speeds, acceleration rates and durations of rest stops. All 
of these are expressed as a list of numerical values that 
are bracketed by a simple vocabulary of letters and num-
bers specific to 3D printing technology, called a GCODE.

30 This is described by layer height and determines how 
many layers are needed to build a particular detail, such 
as a loop. For example, a detail of 5mm height would 
have 4 layers of 1.25mm layer height, which is pretty 
typical for a 3.5mm nozzle or 5 layers at 1mm layer height 
(I most often use this for the 2mm nozzle).

31 Every slicer program offers options for internal and 
external supports, which I almost never use. External
supports leave a mark that interrupts the surface. Internal 
supports could close off spaces to airflow, putting the
piece in danger of exploding in the kiln.

32 Think about ceramics items used for nourishing (stor-
ing, cooking and food service) and caring for the body
(hygiene, nursing and medicine, funerary objects). More 
about both porcelain and bone china in Chapter 4.

Breaking the Rules with Clay Creating a clay object with a rigorous algorithmic design 
requires careful planning and tweaking. 28 Assuming that 
all the calculations were right, we would finally have a file
ready for the printer. 29 Many aspects of how the math is 
encountered in physical form is ultimately decided by the 
numerous choices a craftsperson makes throughout the
workflow, as well as by their individual vision for a desirable 
outcome. These choices are often too subtle to have an 
immediate visible effect. Rather, the sum of these choices 
will create a unique combination, which ultimately defines 
the shape of the resulting object.

When I started 3D printing with porcelain, the general 
consensus among ceramists as well as among tech ex-
perts predicted that this material—generally too fussy and 
difficult to work with—was not suitable for this process. I 
was warned that the rather gentle pressure of the extrusion 
would not produce sufficient adhesion in the walls, and the 
form (being extremely soft) would not be able to support it-
self. I was reminded that porcelain would continue to move, 
warp, shrink and crack uncontrollably in the drying process, 
especially given the added water content that makes it 
pliant enough for the machine to extrude. In short, that I 
would not get too far with it.

My earliest experiments, which started with building 
textures from sequenced loops, proved otherwise. The 
first trials were forms made of single stacks of loops put 
on humble cylinders. I experimented by slicing the form 
thicker and thinner,  30 increasing extrusion, switching 
nozzle diameters, putting the loops closer together and 
farther apart. Gradually, I stated building increasingly 
complex designs with these loops, then with other sorts 
of textural elements, playing now freely with the way they 

stacked, intersected or combined to form larger clusters. 
Through these experiments, I was able to create ways by 
which extruded porcelain walls can be made strong enough 
to stand. Depending on my design, I could also make them 
very thin and translucent. I also figured out solutions for 
supporting a variety of rather tricky forms, not by applying 
the presets of the printer, 31 but by foam, clay, wads of 
paper and other makeshift temporary structures, which are 
means familiar to ceramists.

Experimentation is a necessity. What will not work may 
be anticipated, but only repeated test prints will give me a 
confident understanding of where the form is the weakest, 
where it might fail, and how to prevent that. As each new 
form is a new challenge, figuring out as I go and learning 
through near-failures, are some of the most exciting as-
pects of ceramic printing.

Clay challenges all logical and predictable outcomes. 
Its own materiality is made even richer by a long ceramics 
history that is connected to the mundane, bodily and the 
abject. 32 The ceramic process leads to tactile and tangible 
objects with a spatial presence, which relates our abstract 
starting ideas about rules and systems back to the body 
and the human experience of touch.

Throughout this work, I have been most interested in 
striking a balance between reason (the logic of the math) 
and clay’s natural tendencies. I paid attention to all those 
places along the process where logic can trip and chance 
takes over. Watching each piece form on the printer, each 
little coil that adds texture to the main form rising out of the 
extruder unit is a result of a long process. It is also a magi-
cal experience. I don’t know until the very last pass is made 
on the form what the final outcome will be like.
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The finished piece has many stories, meaning accu-
mulating layer upon layer. Thus, the origin story of these 
pieces reveals the process of their making, in addition to 
the mathematical ideas they represent. My job is to make 
choices in a way that explores and exposes not only WHAT 
they are but also HOW and WHY they have come to be.

Ultimately it is up to the viewer’s interpretation to give 
life and context to these objects and, through them, to 
mathematical ideas. 

Several of my previous collaborations with mathema-
ticians and designers resulted in sculptural forms that 
would not have been possible without the use of 3D print-
ing technology. 
In 2016, I approached mathematician Henry Segerman 
about making, in bone china, one of his interesting proto-
types for visualizing a 4-dimensional form. I sectioned the 
complex tetrahedron-like shape into simple parts in Rhino 
and prototyped those on a layer deposition printer. 33 I made 
molds from the prototyped parts and cast the molds with 
liquid bone china slip. Ultimately, the parts were assembled 
in the kiln and fired together. Much to my amusement, the 
nearly perfect form slumped and contorted, marvelously 
softening the rigid geometry of the model. 34 Similarly, I 
made a connection with mathematician Ken Brakke, the 
creator of Surface Evolver. 35 Ken helped me to explore the 
mathematical logic of a gyroid, 36 which turned out to be a 
rather impossible object to build by purely analogue means 
in clay. It has taken me many years to make the first one 
in porcelain, the break-through ultimately brought on by a 
ceramic 3D printer. 37

Last but not least, even elementary mathematical ideas 
can bring interesting results when used as hacks 38 in the 
process of 3D printing. In the summer of 2018, I collaborated 
with IxDesigner, Audrey Desjardins, on a series of drinking 
vessels called ListeningCups. For these, we used ambient 
sounds, which we had gathered from a variety of urban 
environments. For our project, I devised a way for the 3D 
printer to use sound data in creating textures, not by moving 
but by stopping. Pauses of various lengths 39 created an 
extrusion in place, correlating sound volume changes with 
bumps of various sizes, thus encapsulating the audible in-
formation into tactile material. With Audrey, we contemplated 
the process of such transcription from the perspectives of 
both data stories and data tactility. 40

Inspired by these results, I continued developing meth-
ods based on hacking the machine itself and putting tech-
nology in the service of the material. These new projects 
used math, more specifically trigonometry. 41 With some 
coding, which recalculates sine and cosine of the original 
spatial coordinates, the sound data sends the printhead to 
one of four randomly assigned new directions, creating a 
unique alternative path each and every time. The resulting 
lines weave in and out of the surface of the vessel, each 
sound environment making its unpredictable footprint 
through rather rational means in clay.

33 All this work was done during an artist residency at 
Sundaymorning@ekwc, widely known by its former name
European Ceramic Workcenter (Europees Keramisch 
Werkcentrum or EKWC)

34 This piece, entitled Perfect Imperfect has become 
part of many of my installations, from Axiomatic to Parlor
Games: Scientia. 

35 This is a computer program for modeling and visual-
izing hypothetical soap film surfaces, so called MINIMAL
SURFACE models.

36 A gyroid is an infinitely connected triply PERIODIC 
minimal surface discovered by Alan Schoen in 1970.
Periodic means that the object consists of units that 
repeat without change.

37 My version of the gyroid is called Mystery. Solved. 
Mystery in reference to the back and forth email conver-
sations with Ken while trying to figure out the geometry  
of this object.

38 By hacks, I mean editing, changing or simply tweaking 
the machine code. 

39 which corresponded to the changing loudness of 
sound pattern from each environment. We could have 
used any other aspect of the sound file: frequency, wave-
length, amplitude, etc…

40  See a detailed description of this project and our 
definitions for the terms data tactility and data stories, in
ListeningCups: A Case of Data Tactility and Data Stories. 
(co-authored with Audrey Desjardins) ACM Proceedings, 
Designing Interactive Systems (DIS) 2019. 

41 This project is called Pathfinder. The pathfinder code, 
which was written with the help of Daria, also found its
way to several recent projects of mine.


